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Many of the results obtained in the stationary theory of thermal
explosion relate to symmetrical regions in which the temperature dis-
tribution depends on a single space coordinate, Important practical
problems with two or three independent variables lead to nonlinear
partial differential equations, whose solution involves sericus mathe-
matical difficulties. In [1] a variational method was proposed for
such problems, However, in the formulation adopted in [1] obtaining
numerical results requires laborious calculations, Consequently, in
[1] the only value obtained by a variational method is that of the
critical parameter for a sphere, which differs by 25% from the known
exact solution. The computational difficulties encountered in solving
the above-mentioned variational probiems are associated with the
form of the relation between heat release and temperature in the heat
conduction equation and can be eliminated by choosing another more
convenient approximation of the Arrhenius law for temperatures T <«
« E/R (E is the activation eneigy).

We note that the actual heat release corresponding to an exo-
thermic chemical reaction will be a bounded function of temperature.
Hence it follows that there always exists at least one solution of the
corresponding stationary heat conduction problem. However, in the
theory of thermal explosion only those solutions corresponding to low
(as compared with E/R) temperatures are of physical interest, In this
temperature region the boundedness of the heat release still has no
effect, so that replacing the bounded source with one that increases
without bound" leads only to the nonexistence of a high-temperature
solution, which at high activation energies is of no interest,

Evidently, it is simplest and most convenient to approximate the
function exp (~E/R) in the region RT « E by a quadratic trinomial,
as proposed in [2]. The expression given in [2]is valid at RT/E ~ 1072,
The region of applicability of this approximation can be extended
somewhat, ‘We introduce the relation
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Here T, is the temperature at the boundary. The coefficients A, B must
be so selected that (1) is the best approximation on the interval 0 =

= 6 =2.5, which is alone of interest in the theory of thermal explo-
sion, Below we present values of A(x) or B(o) for several values of o,
The last column also gives the coefficients from [2] determined so
that the approximation is the best in the neighborhood of the point
6=1.

0=0.01 0.05  0.10 0

A=0.309 0.650 0.825 0,718
B=1.412 0.988 0.667 1.000.

The error of approximation (1) does not exceed about 3%,
Keeping in mind the described approximation, we will consider
the boundary value problem in the region D
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IMore correctly, increasing more rapidly than a linear function of

temperature.

Here I;, 1, I, are the greatest dimensions of the region B along the
X, ¥, 2 axes respectively. We write the variational principle corre-
sponding to problem (2) in the form
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We will first consider problem (2) for the interval 0 = £ = 1; its
solution will be required in what follows, The temperature distribu-
tion can be written in the form
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Here ¢ = 6(0) is a constant of integration determined from the relation

Y, ( 2 )*/z Sl du

1" =\TF¥ 4c F B~ ; (4 3 ky? kgut)

o ¢ (YA + Be) e 1/3Bc? s
1= "1 A B 2= T Ac 1 Be )

Henceforth, for definiteness, in obtaining numerical results we
will take the values A =0.72 and B =1, Simple calculations show
that (5) can be solved for ¢ at q =< q* = 0, 88; the corresponding value
¢* =1,20, These results coincide with those obtained in [4],

We now return to the functional (3). Using the known theorem of
the calculus of variations [5], we can show that the function 6(§),
determined from (4), gives a minimum value of the functional (3).
Selecting the simplest trial function
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with parameter ¢, after substitution in (3) we obtain a quadratic equa-
tion for ¢, which has real roots only at q = g* = 0, 89; the correspond-
ing ¢* = 1,21, which is very close to the exact values, The critical
values for a sphere and a cylinder thus obtained are respectively equal
to: g* =3,68, ¢ =1,61 (sphere) and ¢¢ = 2.11, ¢* =1,41 (cylinder).
These values are also close to the exact values, somewhat exceeding
them, In the general case it is not possible to show that values of ¢*
obtained as the condition of solvability of a certain system of alge-
braic equations following from (3) will always exceed the exact values.

We will now consider the problem for a cylinder of finite length,
The simplest trial function 6(p, £) = c(1 ~ Py~ £ gives

g* = 2.14 b + 0.88, ()

for a rectangle (with 8 ) =c(d — EH (1 — %)

g* = 0.87(1 + a), 8
for a parallelepiped (8 (EmE)=c{1 —EH (1 —nH {1 —E
g*=085(1+ a+ b). (&)

The dependence of ¢* on the parameters a and b in (7), (8), (9)
is associated with a particular form of the trial function, More exact
results can be obtained by using the method of L. V. Kantrovich [3].
In the case of a rectangle we set 8 (§, n)=(1 — 03X [ (§). We will
assume that a==(L / #2)2<C 1 (otherwise £ and 7 must be transposed),
Substituting in (3) and integrating with respect to 7, we arrive at a
one-dimensional variational problem with a Euler equation in the
form

17+ g (1.25 4 0.72f + 0.74f%) — 2.50 of = 0. (10)

This is the equation of the one-dimensional problem (2), which
is solvable if an equation of type (5) for the constant of integration is
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solvable, Similarly for a cylinder of finite length we set 9(p, §) = REFERENCES
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@ ~ p*)f (). The equation for f¥) has the form 1. A, M, Grishin, "Some problems of ignition theory," PMTF,

no. 5, 1962,

2. P. Gray and M, J. Harper, The Thermal Theory of Induction
Period and Ignition Delays. Seventh Symp. (Internat.) on Combustion,
Butterworths Sci. Publ,, Lnd., p. 425, 1959,

3. L. V. Kantorovich and V. I. Krylov, Approximate Methods of
Higher Analysis [in Russian], Fizmatgiz, 1962.

4, D, A, Frank-Kamenetskii, Diffusion and Heat Transfer in
Chemical Kinetics [in Russian], Izd-vo AN SSSR, 1947,

7+ q (4.50 + 0.72 f + 0.75 3) — 6bf =0 @e=ul/R). (11

Here R is the radius of the cylinder. Below we present values of g*
for a rectangle calculated from the solution of (8) and (10) at dif-
ferent values of q, together with values of q* for a cylinder calcu-
lated in accordance with (7) and (11) at different values of b,

* *

* *
a q(s) 'I(m) q 9(11) 5, 1. M. Gel'fand and S, V, Fomin, Calculus of Variations [in
0.045 0.91 0.89 0.052 0.99 0.95 Russian], Fizmatgiz, 1961.
0.21 1.05 1.03 0.13 1.16 1.42
0.35 1.48 1.16 0.34 1.60 1.54
0.77 1.55 1.55 1.29 3.60 3.49 17 May 1966 Minsk



