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Many of the results obta ined in the s ta t ionary theory of thermal  
explosion r e l a t e  to symmet r i c a l  regions in which the t empera tu re  dis-  

t r ibut ion depeuds on a s ingle  space  coordinate.  Impor tant  p rac t i ca l  

problems with two or three independent  var iables  lead to nonl inear  
par t ia l  d i f fe rent ia l  equations, whose solution involves  serious ma the -  

m a t i c a l  diff icul t ies .  In [1] a va r ia t iona l  method was proposed for 

such problems, However, in the formulat ion adopted in [1] obta in ing  
numer i ca l  results requires laborious calcula t ions .  Consequently,  in 

[1] the only va lue  obtained by a var ia t iona l  method is that  of the 

c r i t i ca l  pa ramete r  for a sphere, which differs by 25% from the known 
exac t  solution. The  computa t iona l  d i f f icul t ies  encountered in solving 

the above -men t ioned  va r i a t iona l  problems a r e  associated with the 

form of the re la t ion  be tween hea t  re lease  and t empera tu re  in the hea t  

conduction equat ion and can  be e l i m i n a t e d  by choosing another  more 

convenien t  approximat ion  of the Arrhenius law for tempera tures  T << 

<< E/R (E is the ac t iva t ion  energy), 
We note that  the ac tua l  hea t  re lease  corresponding to an exo-  

t he rmic  c h e m i c a l  reac t ion  wilI  be  a bounded function of tempera ture .  
Hence  i t  follows that  there a lways  exists at  leas t  one solution of the 

corresponding s ta t ionary hea t  conduct ion problem. However, in the 

theory of thermal  explosion only those solutions corresponding to low 

(as compared  with E/R) tempera tures  are of physical  interest .  In this 
t empera tu re  region the boundedness of the hea t  re lease  s t i l l  has no 

effect,  so that  rep lac ing  the  bounded source with one tha t  increases  

without  bound t leads only to the nonexis tence  of a h i g h - t e m p e r a t u r e  

solution, which at  h igh  ac t i va t i on  energies  is of no interest .  

Evidently,  i t  is s imples t  and most  conven ien t  to approx imate  the 

function exp ( -E /R)  in  the region RT << E by a quadra t ic  t r inomia l ,  

as proposed in [2]. The  expression g iven  in [2] is va l id  at RT/E ~ 10 -z. 

The  region of a p p l i c a b i l i t y  of this approx imat ion  can  be  extended 

somewhat .  W e  introduce the  re la t ion  

- - E  - - t  
exp ~ ~ exp - ~ -  [1 + A (a) 0 +  S (c~) 0~1, 

0 T -- T o R T o  
~r0  a = - 2 -  ) " (1) 

Here To is the t empera ture  a t  the boundary. The coeff ic ients  A, B must 
be so se lec ted  that  (1) is the best approx imat ion  on the in te rva l  0 -< 

-<- 0 -< 2 .5 ,  which is a lone  of interest  in  the  theory of t he rma l  exp lo-  

sion. Below we present values  of A(c 0 or B(c 0 for several  values  of co. 
The last  co lumn also gives  the coef f ic ien ts  from [2] de te rmined  so 

that  the approximat ion  is the best in the neighborhood of the point  

0 = 1 .  

a = 0 . 0 i  0.05 0 . t 0  0 

A = 0 . 3 0 9  0.650 0.825 0 .7 t8  
B = t . 4 t 2  0.988 0.667 t.000:. 

The  error of approx ima t ion  (1) does not  exceed  about  3%. 

Keeping  in mind the described approximat ion ,  we wi l l  consider 

the boundary va lue  prob lem in the region D 

A 0 + q F ( 0 ) ~ - - ~ - 0 ,  0 1 r = 0  F ( O ) - ~ t - } - A O - } - B O  ~ , 

0 2 O~ 0 ~ :v y z 
~=-aV+aThY+bW' ~=T'  n=~ ,  r 

a'~'k'-~a / ' --~ I s .  ' q = 4 - ~ o ~ e x p -  a (2) 

ZMore correc t ly ,  increas ing  more  rap id ly  than  a l i nea r  funct ion of 

t empera ture .  

Here l I, l 2, l a are  the grea tes t  dimensions of the region B along the 
x. y, z axes respect ive ly .  We wri te  the var ia t iona l  pr inc ip le  corre-  

sponding to problem (2) in the form 

A B 
8 1 = 8  S IO~ +aO~2 +bO~2-- 2 q ( O + ' ~ - O ~ + - ~ O ~ ) ] d V = O . ( 3 )  

(D) 

We wil l  first consider problem (2) for the in te rva l  0 <- g -< 1; i ts  

solution wit l  be  required in what follows. The t empera tu re  dis tr ibu-  

t ion can be wri t ten  in the form 

do 
+ Ac + Be 2 } ( t  - -  k~uS + ks~4) 1/2 

v 

(4) 
v = (1 - - 0 / c )  q'. 

Here c = 0(0) is a constant of in tegra t ion  de te rmined  from the re la t ion  

2c ,'~ % ~ du ( ql/, 
\ t + A c @ B c  "~1 o ( t @ k l u  ~+k~u~)% 

J 

0 

c d/2A + Be) I/sBc2 
k t - -  iJr_Ac@Bc~ , k2_~ t~_Ac_[_Bc ~. (5) 

Henceforth,  for definiteness,  in obta ining numer i ca l  results we 

wi l l  t ake  the  values  A = 0 .72  and B = 1. S imple  ca lcu la t ions  show 

tha t  (5) can  be solved for c at  q -< q* = O. 88; the corresponding va lue  

c* = 1.20.  These results co inc ide  with those obtained in [4]. 

We now return to the func t iona l  (3). Using the known theorem of 

the ca lculus  of var ia t ions  [51 w e  can  show tha t  the function O(g), 

de te rmined  from (4}, g ives  a m i n i m u m  va lue  of the funct ional  (3). 

Se lec t ing  the  s imples t  t r ia l  funct ion 

o(D = ~ (i - -  ~ )  (6) 

with pa rame te r  c, af ter  substi tution in (3) we obtain a quadra t ic  equa-  

t ion for c, which has rea l  roots only at  q -< q* = 0.89;  the correspond- 
ing c* = 1.21,  which is very  close to the exac t  values.  The c r i t i ca l  

values  for a sphere and a cyI inder  thus obta ined are r e spec t ive ly  equal  

to: q* = 8 .63,  c ~ = 1 .61  ( sphe re )and  q* = 2.11,  c* = 1 .41  (cylinder) .  

These values  are  also close to the exac t  values,  somewhat  exceed ing  

them.  In the  gene ra l  case i t  is not  possible to show that  values  of q* 

obta ined as the condi t ion  of so lvab i l i ty  of a ce r t a in  system of a l g e -  
bra ic  equat ions fol lowing from (3) wi l l  a lways  exceed  the exac t  values.  

We wi l l  now consider the  problem for a cy l inder  of f in i te  length.  

The  s imples t  t r ia l  function O(p, ~) = c(1 - pZ)(1 - ~2) gives  

q* = 2.14 b + 0.88,  (7) 

for a r ec t ang le  (with 0 (~,~) : c (1 - -  ~2) (t - -  ~l~)) 

q* : 0.87 (t + a), (8) 

for a pa ra t l e t ep iped  (0 (~Jl,~) = c (1 - -  ~ )  (i - -  ~1 s) (1 - -  ~ ) )  

q* = 0.85 (t + a + b). (9) 

The dependence  of q* on the parameters  a and b in (7), (8), (9) 

is associa ted with a pa r t i cu la r  form of the t r i a l  funct ion.  More exac t  

results can  be obta ined by using the method  of L. V. Kantrovich [3]. 

In the case of a r ec t ang l e  we set  O (g, n ) = ( l  - -  ~ls)X ] (~). We wi l l  
assume tha t  a=(l i  / l~)Z~ I (otherwise g and 7/must be transposed). 

Substi tut ing in (3) and in tegra t ing  with respect  to % we ar r ive  a t  a 

one -d imens iona l  va r i a t iona l  p rob lem witl~ a Euler equa t ion  in the 

form 

I " +  q ( t - 2 5 + 0 . 7 2 J + 0 " 7 1 1  s ) -  2.50 a f t - - -0 .  (10) 

This is the equa t ion  of the one -d imens iona l  problem (2), which 

is so lvable  i f  an equa t ion  of type (5) for the  constant  of in tegra t ion  is 
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solvable. Similarly for a cylinder of finite length we set O(P, 5) 
= (t - -  p~)] (g). The equation for ] (g)has  the form 

1" q- q ( t . 5 0 " 4 - 0 . 7 2 1 q - 0 . 7 5 1  s ) -  6bJ=O (b=lx/R) .  (11) 

Here R is the radius of the cylinder. Below we present values of q* 
for a rectangle calculated from the solution of (8) and (10) at dif- 
ferent values of a, together with values of q* for a cylinder calcu- 
lated in accordance with (7) and (11) at different values of b. 

a q(.) q(1o) b q(~) q(n) 
0.045 0.91 0.89 0.052 0.99 0.95 
0.21 1.05 t .03  0 . t~  lAB 1.t2 
0.35 1.18 1. t6 0.34 1.60 1.54 
0.77 1.55 1.55 t .29 3.60 3.49 
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